Alterations in Soluble Class III Peroxidases of Maize Shoots by Flooding Stress
نویسندگان
چکیده
Due to changing climate, flooding (waterlogged soils and submergence) becomes a major problem in agriculture and crop production. In the present study, the effect of waterlogging was investigated on peroxidases of maize (Zea mays L.) leaves. The plants showed typical adaptations to flooding stress, i.e., alterations in chlorophyll a/b ratios and increased basal shoot diameter. Seven peroxidase bands could be detected by first dimension modified SDS-PAGE and 10 bands by first dimension high resolution Clear Native Electrophoresis that altered in dependence on plant development and time of waterlogging. Native isoelectric focusing revealed three acidic to neutral and four alkaline guaiacol peroxidases that could be further separated by high resolution Clear Native Electrophorese in the second dimension. One neutral peroxidase (pI 7.0) appeared to be down-regulated within four hours after flooding, whereas alkaline peroxidases (pI 9.2, 8.0 and 7.8) were up-regulated after 28 or 52 h. Second dimensions revealed molecular masses of 133 kDa and 85 kDa for peroxidases at pI 8.0 and 7.8, respectively. Size exclusion chromatography revealed native molecular masses of 30-58 kDa for peroxidases identified as class III peroxidases and ascorbate peroxidases by mass spectrometry. Possible functions of these peroxidases in flooding stress will be discussed.
منابع مشابه
Membrane-bound guaiacol peroxidases from maize (Zea mays L.) roots are regulated by methyl jasmonate, salicylic acid, and pathogen elicitors
Plant peroxidases are involved in numerous cellular processes in plant development and stress responses. Four plasma membrane-bound peroxidases have been identified and characterized in maize (Zea mays L.) roots. In the present study, maize seedlings were treated with different stresses and signal compounds, and a functional analysis of these membrane-bound class III peroxidases (pmPOX1, pmPOX2...
متن کاملFungal Infection Alters Phosphate Level and Phosphatase Profiles in Arabidopsis
Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...
متن کاملFamilial Prion Disease Cases Without Mutation in PRNPGene
Phosphorus (P), in the form of phosphate ion (Pi), is a vital element contributing in biomolecule structures, metabolic reactions, signaling pathways and energy transfer within the living cells. The objective of the present study was to assess the influence of fungal infection on Pi metabolism in compare to the effects of phosphate stress in Arabidopsis. Quantification of total P contents showe...
متن کاملDrought-induced Accumulation of Soluble Sugars and Proline in Two Maize Varieties
Drought stress is a major factor in reduce growth, development and production of plants. Stress was applied with polyethylene glycol (PEG) 6000 and water potentials were: zero (control), -0.15 (PEG 10%), -0.49 (PEG 20%), -1.03 (PEG 30%) and -1.76 (PEG40%) MPa. The solutes accumulation of two maize (Zea mays L.) cultivars -704 and 301were determined after drought stress. In our experiments, a hi...
متن کاملInfluence of chemical treatments on glutathione S-transferases of maize with activity towards metolachlor and cinnamic acid.
The subcellular distribution of glutathione S-transferase (GST) activity extracted from shoots of 3-day-old etiolated seedlings of maize (Zea mays L., Northrup-King 9283 hybrid) and the induction of soluble and membrane-bound GST activity by the safener benoxacor, the herbicide metolachlor and their combination (CGA-180937) were investigated. GST activity extracted from maize shoots was detecte...
متن کامل